How does forensic identification work?
Any type of organism can be identified by examination of DNA sequences unique to that species. Identifying individuals within a species is less precise at this time, although when DNA sequencing technologies progress farther, direct comparison of very large DNA segments, and possibly even whole genomes, will become feasible and practical and will allow precise individual identification.
To identify individuals, forensic scientists scan 13 DNA regions that vary from person to person and use the data to create a DNA profile of that individual (sometimes called a DNA fingerprint). There is an extremely small chance that another person has the same DNA profile for a particular set of regions.
Some Examples of DNA Uses for Forensic Identification
Identify potential suspects whose DNA may match evidence left at crime scenes
Exonerate persons wrongly accused of crimes
Identify crime and catastrophe victims
Establish paternity and other family relationships
Identify endangered and protected species as an aid to wildlife officials (could be used for prosecuting poachers)
Detect bacteria and other organisms that may pollute air, water, soil, and food
Match organ donors with recipients in transplant programs
Determine pedigree for seed or livestock breeds
Authenticate consumables such as caviar and wine
Is DNA effective in identifying persons?
[answer provided by Daniel Drell of the U.S. DOE Human Genome Program]
DNA identification can be quite effective if used intelligently. Portions of the DNA sequence that vary the most among humans must be used; also, portions must be large enough to overcome the fact that human mating is not absolutely random.
Consider the scenario of a crime scene investigation . . .
Assume that type O blood is found at the crime scene. Type O occurs in about 45% of Americans. If investigators type only for ABO, finding that the "suspect" in a crime is type O really doesn't reveal very much.
If, in addition to being type O, the suspect is a blond, and blond hair is found at the crime scene, you now have two bits of evidence to suggest who really did it. However, there are a lot of Type O blonds out there.
If you find that the crime scene has footprints from a pair of Nike Air Jordans (with a distinctive tread design) and the suspect, in addition to being type O and blond, is also wearing Air Jordans with the same tread design, you are much closer to linking the suspect with the crime scene.
In this way, by accumulating bits of linking evidence in a chain, where each bit by itself isn't very strong but the set of all of them together is very strong, you can argue that your suspect really is the right person.
With DNA, the same kind of thinking is used; you can look for matches (based on sequence or on numbers of small repeating units of DNA sequence) at many different locations on the person's genome; one or two (even three) aren't enough to be confident that the suspect is the right one, but four (sometimes five) are used. A match at all five is rare enough that you (or a prosecutor or a jury) can be very confident ("beyond a reasonable doubt") that the right person is accused.
How is DNA typing done?
Only one-tenth of a single percent of DNA (about 3 million bases) differs from one person to the next. Scientists can use these variable regions to generate a DNA profile of an individual, using samples from blood, bone, hair, and other body tissues and products.
In criminal cases, this generally involves obtaining samples from crime-scene evidence and a suspect, extracting the DNA, and analyzing it for the presence of a set of specific DNA regions (markers).
Scientists find the markers in a DNA sample by designing small pieces of DNA (probes) that will each seek out and bind to a complementary DNA sequence in the sample. A series of probes bound to a DNA sample creates a distinctive pattern for an individual. Forensic scientists compare these DNA profiles to determine whether the suspect's sample matches the evidence sample. A marker by itself usually is not unique to an individual; if, however, two DNA samples are alike at four or five regions, odds are great that the samples are from the same person.
If the sample profiles don't match, the person did not contribute the DNA at the crime scene.
If the patterns match, the suspect may have contributed the evidence sample. While there is a chance that someone else has the same DNA profile for a particular probe set, the odds are exceedingly slim. The question is, How small do the odds have to be when conviction of the guilty or acquittal of the innocent lies in the balance? Many judges consider this a matter for a jury to take into consideration along with other evidence in the case. Experts point out that using DNA forensic technology is far superior to eyewitness accounts, where the odds for correct identification are about 50:50.
The more probes used in DNA analysis, the greater the odds for a unique pattern and against a coincidental match, but each additional probe adds greatly to the time and expense of testing. Four to six probes are recommended. Testing with several more probes will become routine, observed John Hicks (Alabama State Department of Forensic Services). He predicted that DNA chip technology (in which thousands of short DNA sequences are embedded in a tiny chip) will enable much more rapid, inexpensive analyses using many more probes and raising the odds against coincidental matches.
What are some of the DNA technologies used in forensic investigations?
Restriction Fragment Length Polymorphism (RFLP)
RFLP is a technique for analyzing the variable lengths of DNA fragments that result from digesting a DNA sample with a special kind of enzyme. This enzyme, a restriction endonuclease, cuts DNA at a specific sequence pattern know as a restriction endonuclease recognition site. The presence or absence of certain recognition sites in a DNA sample generates variable lengths of DNA fragments, which are separated using gel electrophoresis. They are then hybridized with DNA probes that bind to a complementary DNA sequence in the sample.
RFLP was one of the first applications of DNA analysis to forensic investigation. With the development of newer, more efficient DNA-analysis techniques, RFLP is not used as much as it once was because it requires relatively large amounts of DNA. In addition, samples degraded by environmental factors, such as dirt or mold, do not work well with RFLP.
PCR Analysis
Polymerase chain reaction (PCR) is used to make millions of exact copies of DNA from a biological sample. DNA amplification with PCR allows DNA analysis on biological samples as small as a few skin cells. With RFLP, DNA samples would have to be about the size of a quarter. The ability of PCR to amplify such tiny quantities of DNA enables even highly degraded samples to be analyzed. Great care, however, must be taken to prevent contamination with other biological materials during the identifying, collecting, and preserving of a sample.
STR Analysis
Short tandem repeat (STR) technology is used to evaluate specific regions (loci) within nuclear DNA. Variability in STR regions can be used to distinguish one DNA profile from another. The Federal Bureau of Investigation (FBI) uses a standard set of 13 specific STR regions for CODIS. CODIS is a software program that operates local, state, and national databases of DNA profiles from convicted offenders, unsolved crime scene evidence, and missing persons. The odds that two individuals will have the same 13-loci DNA profile is about one in a billion.
Mitochondrial DNA Analysis
Mitochondrial DNA analysis (mtDNA) can be used to examine the DNA from samples that cannot be analyzed by RFLP or STR. Nuclear DNA must be extracted from samples for use in RFLP, PCR, and STR; however, mtDNA analysis uses DNA extracted from another cellular organelle called a mitochondrion. While older biological samples that lack nucleated cellular material, such as hair, bones, and teeth, cannot be analyzed with STR and RFLP, they can be analyzed with mtDNA. In the investigation of cases that have gone unsolved for many years, mtDNA is extremely valuable.
All mothers have the same mitochondrial DNA as their daughters. This is because the mitochondria of each new embryo comes from the mother's egg cell. The father's sperm contributes only nuclear DNA. Comparing the mtDNA profile of unidentified remains with the profile of a potential maternal relative can be an important technique in missing-person investigations.
Y-Chromosome Analysis
The Y chromosome is passed directly from father to son, so analysis of genetic markers on the Y chromosome is especially useful for tracing relationships among males or for analyzing biological evidence involving multiple male contributors.
728
Web Search
May 9, 2008
DNA Forensics - DNA Fingerpring
Posted by
DNAworld
at
10:03:00 PM
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment