728

Web Search

 

Apr 5, 2010

What information about a genetic condition can statistics provide?

Statistical data can provide general information about how common a condition is, how many people have the condition, or how likely it is that a person will develop the condition. Statistics are not personalized, however—they offer estimates based on groups of people. By taking into account a person’s family history, medical history, and other factors, a genetics professional can help interpret what statistics mean for a particular patient.

Some statistical terms are commonly used when describing genetic conditions and other disorders. These terms include:

Common statistical terms

Statistical term

Description

Examples

Incidence

The incidence of a gene mutation or a genetic disorder is the number of people who are born with the mutation or disorder in a specified group per year. Incidence is often written in the form “1 in [a number]” or as a total number of live births.

About 1 in 200,000 people in the United States are born with syndrome A each year. An estimated 15,000 infants with syndrome B were born last year worldwide.

Prevalence

The prevalence of a gene mutation or a genetic disorder is the total number of people in a specified group at a given time who have the mutation or disorder. This term includes both newly diagnosed and pre-existing cases in people of any age. Prevalence is often written in the form “1 in [a number]” or as a total number of people who have a condition.

Approximately 1 in 100,000 people in the United States have syndrome A at the present time. About 100,000 children worldwide currently have syndrome B.

Mortality

Mortality is the number of deaths from a particular disorder occurring in a specified group per year. Mortality is usually expressed as a total number of deaths.

An estimated 12,000 people worldwide died from syndrome C in 2002.

Lifetime risk

Lifetime risk is the average risk of developing a particular disorder at some point during a lifetime. Lifetime risk is often written as a percentage or as “1 in [a number].” It is important to remember that the risk per year or per decade is much lower than the lifetime risk. In addition, other factors may increase or decrease a person’s risk as compared with the average.

Approximately 1 percent of people in the United States develop disorder D during their lifetimes. The lifetime risk of developing disorder D is 1 in 100.

How are genetic conditions and genes named?

Naming genetic conditions

Genetic conditions are not named in one standard way (unlike genes, which are given an official name and symbol by a formal committee). Doctors who treat families with a particular disorder are often the first to propose a name for the condition. Expert working groups may later revise the name to improve its usefulness. Naming is important because it allows accurate and effective communication about particular conditions, which will ultimately help researchers find new approaches to treatment.

Disorder names are often derived from one or a combination of sources:
The basic genetic or biochemical defect that causes the condition (for example, alpha-1 antitrypsin deficiency);

One or more major signs or symptoms of the disorder (for example, sickle cell anemia);

The parts of the body affected by the condition (for example, retinoblastoma);
The name of a physician or researcher, often the first person to describe the disorder (for example, Marfan syndrome, which was named after Dr. Antoine Bernard-Jean Marfan);

A geographic area (for example, familial Mediterranean fever, which occurs mainly in populations bordering the Mediterranean Sea); or

The name of a patient or family with the condition (for example, amyotrophic lateral sclerosis, which is also called Lou Gehrig disease after a famous baseball player who had the condition).

Disorders named after a specific person or place are called eponyms. There is debate as to whether the possessive form (e.g., Alzheimer’s disease) or the nonpossessive form (Alzheimer disease) of eponyms is preferred. As a rule, medical geneticists use the nonpossessive form, and this form may become the standard for doctors in all fields of medicine.

Naming genes

The HUGO Gene Nomenclature Committee (HGNC) designates an official name and symbol (an abbreviation of the name) for each known human gene. Some official gene names include additional information in parentheses, such as related genetic conditions, subtypes of a condition, or inheritance pattern. The HGNC is a non-profit organization funded by the U.K. Medical Research Council and the U.S. National Institutes of Health. The Committee has named more than 13,000 of the estimated 20,000 to 25,000 genes in the human genome.

During the research process, genes often acquire several alternate names and symbols. Different researchers investigating the same gene may each give the gene a different name, which can cause confusion. The HGNC assigns a unique name and symbol to each human gene, which allows effective organization of genes in large databanks, aiding the advancement of research. For specific information about how genes are named, refer to the HGNC’s Guidelines for Human Gene Nomenclature .

What are complex or multifactorial disorders?

Researchers are learning that nearly all conditions and diseases have a genetic component. Some disorders, such as sickle cell anemia and cystic fibrosis, are caused by mutations in a single gene. The causes of many other disorders, however, are much more complex. Common medical problems such as heart disease, diabetes, and obesity do not have a single genetic cause—they are likely associated with the effects of multiple genes in combination with lifestyle and environmental factors. Conditions caused by many contributing factors are called complex or multifactorial disorders.

Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person’s risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat because the specific factors that cause most of these disorders have not yet been identified. By 2010, however, researchers predict they will have found the major contributing genes for many common complex disorders.

Can changes in mitochondrial DNA affect health and development?

Mitochondria are structures within cells that convert the energy from food into a form that cells can use. Although most DNA is packaged in chromosomes within the nucleus, mitochondria also have a small amount of their own DNA (known as mitochondrial DNA or mtDNA). In some cases, inherited changes in mitochondrial DNA can cause problems with growth, development, and function of the body’s systems. These mutations disrupt the mitochondria’s ability to generate energy efficiently for the cell.

Conditions caused by mutations in mitochondrial DNA often involve multiple organ systems. The effects of these conditions are most pronounced in organs and tissues that require a lot of energy (such as the heart, brain, and muscles). Although the health consequences of inherited mitochondrial DNA mutations vary widely, frequently observed features include muscle weakness and wasting, problems with movement, diabetes, kidney failure, heart disease, loss of intellectual functions (dementia), hearing loss, and abnormalities involving the eyes and vision.

Mitochondrial DNA is also prone to noninherited (somatic) mutations. Somatic mutations occur in the DNA of certain cells during a person’s lifetime, and typically are not passed to future generations. Because mitochondrial DNA has a limited ability to repair itself when it is damaged, these mutations tend to build up over time. A buildup of somatic mutations in mitochondrial DNA has been associated with some forms of cancer and an increased risk of certain age-related disorders such as heart disease, Alzheimer disease, and Parkinson disease. Additionally, research suggests that the progressive accumulation of these mutations over a person’s lifetime may play a role in the normal process of aging.

Can changes in the structure of chromosomes affect health and development?

Changes that affect the structure of chromosomes can cause problems with growth, development, and function of the body’s systems. These changes can affect many genes along the chromosome and disrupt the proteins made from those genes.

Structural changes can occur during the formation of egg or sperm cells, in early fetal development, or in any cell after birth. Pieces of DNA can be rearranged within one chromosome or transferred between two or more chromosomes. The effects of structural changes depend on their size and location, and whether any genetic material is gained or lost. Some changes cause medical problems, while others may have no effect on a person’s health.
Changes in chromosome structure include:

Translocations

A translocation occurs when a piece of one chromosome breaks off and attaches to another chromosome. This type of rearrangement is described as balanced if no genetic material is gained or lost in the cell. If there is a gain or loss of genetic material, the translocation is described as unbalanced.

Deletions

Deletions occur when a chromosome breaks and some genetic material is lost. Deletions can be large or small, and can occur anywhere along a chromosome.

Duplications

Duplications occur when part of a chromosome is copied (duplicated) too many times. This type of chromosomal change results in extra copies of genetic material from the duplicated segment.

Inversions

An inversion involves the breakage of a chromosome in two places; the resulting piece of DNA is reversed and re-inserted into the chromosome. Genetic material may or may not be lost as a result of the chromosome breaks. An inversion that involves the chromosome’s constriction point (centromere) is called a pericentric inversion. An inversion that occurs in the long (q) arm or short (p) arm and does not involve the centromere is called a paracentric inversion.

Isochromosomes

An isochromosome is a chromosome with two identical arms. Instead of one long (q) arm and one short (p) arm, an isochromosome has two long arms or two short arms. As a result, these abnormal chromosomes have an extra copy of some genes and are missing copies of other genes.

Dicentric chromosomes

Unlike normal chromosomes, which have a single constriction point (centromere), a dicentric chromosome contains two centromeres. Dicentric chromosomes result from the abnormal fusion of two chromosome pieces, each of which includes a centromere. These structures are unstable and often involve a loss of some genetic material.

Ring chromosomes

Ring chromosomes usually occur when a chromosome breaks in two places and the ends of the chromosome arms fuse together to form a circular structure. The ring may or may not include the chromosome’s constriction point (centromere). In many cases, genetic material near the ends of the chromosome is lost.

Many cancer cells also have changes in their chromosome structure. These changes are not inherited; they occur in somatic cells (cells other than eggs or sperm) during the formation or progression of a cancerous tumor.

Can changes in the number of chromosomes affect health and development?

Human cells normally contain 23 pairs of chromosomes, for a total of 46 chromosomes in each cell. A change in the number of chromosomes can cause problems with growth, development, and function of the body’s systems. These changes can occur during the formation of reproductive cells (eggs and sperm), in early fetal development, or in any cell after birth. A gain or loss of chromosomes from the normal 46 is called aneuploidy.

A common form of aneuploidy is trisomy, or the presence of an extra chromosome in cells. “Tri-” is Greek for “three”; people with trisomy have three copies of a particular chromosome in cells instead of the normal two copies. Down syndrome is an example of a condition caused by trisomy. People with Down syndrome typically have three copies of chromosome 21 in each cell, for a total of 47 chromosomes per cell.

Monosomy, or the loss of one chromosome in cells, is another kind of aneuploidy. “Mono-” is Greek for “one”; people with monosomy have one copy of a particular chromosome in cells instead of the normal two copies. Turner syndrome is a condition caused by monosomy. Women with Turner syndrome usually have only one copy of the X chromosome in every cell, for a total of 45 chromosomes per cell.

Rarely, some cells end up with complete extra sets of chromosomes. Cells with one additional set of chromosomes, for a total of 69 chromosomes, are called triploid. Cells with two additional sets of chromosomes, for a total of 92 chromosomes, are called tetraploid. A condition in which every cell in the body has an extra set of chromosomes is not compatible with life.

In some cases, a change in the number of chromosomes occurs only in certain cells. When an individual has two or more cell populations with a different chromosomal makeup, this situation is called chromosomal mosaicism. Chromosomal mosaicism occurs from an error in cell division in cells other than eggs and sperm. Most commonly, some cells end up with one extra or missing chromosome (for a total of 45 or 47 chromosomes per cell), while other cells have the usual 46 chromosomes. Mosaic Turner syndrome is one example of chromosomal mosaicism. In females with this condition, some cells have 45 chromosomes because they are missing one copy of the X chromosome, while other cells have the usual number of chromosomes.

Many cancer cells also have changes in their number of chromosomes. These changes are not inherited; they occur in somatic cells (cells other than eggs or sperm) during the formation or progression of a cancerous tumor.

Can a change in the number of genes affect health and development?

People have two copies of most genes, one copy inherited from each parent. In some cases, however, the number of copies varies—meaning that a person can be born with one, three, or more copies of particular genes. Less commonly, one or more genes may be entirely missing. This type of genetic difference is known as copy number variation (CNV).

Copy number variation results from insertions, deletions, and duplications of large segments of DNA. These segments are big enough to include whole genes. Variation in gene copy number can influence the activity of genes and ultimately affect many body functions.

Researchers were surprised to learn that copy number variation accounts for a significant amount of genetic difference between people. More than 10 percent of human DNA appears to contain these differences in gene copy number. While much of this variation does not affect health or development, some differences likely influence a person’s risk of disease and response to certain drugs. Future research will focus on the consequences of copy number variation in different parts of the genome and study the contribution of these variations to many types of disease.