728

Web Search

 

Jun 20, 2008

Molecular Biology -- DNA and RNA

New Edition


Chapter 3. Molecular Biology -- DNA and RNA

Nucleic acid methods (1)

Nucleic acid methods (2)

DNA isolation & related protocols

DNA Purification (glass milk vs electroelution)

DNA, RNA Sequencing

RNA Isolation and Purification

Isolation of DNA,RNA, and Protein simultaneously.

DNA mutation detection by SSCP

Preparation of DNA and RNA probes

Southern blot hybridization

Northern blot hybridization

Loss of Heterozygosity (LOH)

Gene knockout protocol

SiRNA gene knockout

Plasmid and its usefulness

DNA library construction

Microarray protocols.

Basic knowledge of microarray.

Introduction to Microarray.

MicroArray Procedure

Total RNA Isolation from cultured cells.

DNase Treatment of Total RNA

Making the single strand cDNA probe.

Automated Slide Processor (ASP) Version for hybridization.

Washing microarrays in ASP.

Processing of Array slide

Pre-hybridization of the processed slides (NON-Automated version).

Hybridization of Cy3 + Cy5 probe to glass array (NON-Automated version).

Preparation of Dendrimer Cy3 and Cy5.

Washing unbound probe from glass array (NON-Automated version).

Hybridization of Dendrimers (Cy3 and Cy5) to Array (NON-Automated version).

Washing unbound dendrimer from glass array(NON-Automated version).

Microarray Dababases

Troubleshooting

Other Microarray Protocols (1,2)

Gene transfection

Transformation protocols

Gene therapy for cancer

Molecular cloning

Conditional gene transfection(Tet on/off)

Web Guider

Ch 1.General Lab Techniques

Ch 2.Molecular Separation

Ch 3.DNA and RNA

Ch 4.Genetics

Ch 5.PCR Serials

Ch 6.Protein

Ch 7.DNA Protein Interactions

Ch 8.Immunohistoch / immunology

Ch 9.Cellular Biology

Ch 10.GC/MS, NMR and Proteomics

Ch 11.Animal Experiments

Ch 12.Worm: C. Elegans

Ch 13.HPLC and TLC

Ch 14.Buffers formats in Lab.

Ch 15.Other Resources

Free eBooks at Library Online

Cinema Online,Free Movies-(1)

Progresses in Life Science

Free eBooks in biomedicine

Pathway databases

Biological Educational Resources

Textbooks and Lab Manuals

Bio Protocols

Bio Videos

Bio Reagents & Buffers

Bio Resources

Bio Forum

PCR Protocols--PCR Station

PCR Serials and Its Related Protocols

PCR Serial and It's Related Protocols
PCR (General Procedure)
PCR Primer Design Tools
RT-PCR
Real time PCR
More PCR Protocols Online
Video and Animation of PCR
Mouse Genotyping by PCR
PCR Based Molecular Cloning
PCR Primer Design and Reaction Optimisation
10 Things That Can Kill Your PCR
PCR Troubleshootings


What's Polymerase Chain Reaction (PCR)? ...Principal,Procedure,and more...

The polymerase chain reaction (PCR) is a biochemistry and molecular biology technique[1] forexponentially amplifying a fragment of DNA, via enzymatic replication, without using a living organism (such as E. coli or yeast). PCR can be used for amplification of a single or few copies of a piece of DNA across several orders of magnitude, generating millions or more copies of the DNA piece. As PCR is an in vitro technique, it can be performed without restrictions on the form of DNA, and it can be extensively modified to perform a wide array of genetic manipulations.
Developed in 1983 by Kary Mullis, PCR is now a common technique used in medical and biological research labs for a variety of tasks, such as the sequencing of genes and the diagnosis ofhereditary diseases, the identification of genetic fingerprints (used in forensics and paternity testing), the detection and diagnosis of infectious diseases, and the creation of transgenic organisms. Mullis won the Nobel Prize for his work on PCR.

See: Wikipedia..

FRQs for PCR and other experiments on molecular biology

17. What is PCR? 18. What are some good references for PCR?19. How should I select a set of primers to use for PCR?20. What kinds of programs are available for designing PCR primers?21. What is "Hot-start" PCR? 22. What is AP-PCR or RAPD PCR?23. What is "Touchdown" PCR? 24. Is there a simple method to sequence lambda, M13, or plasmid clones using PCR?
34. Should we break up the methods-reagnts group into subsets with one beingexclusively on the polymerase chain reaction (PCR)?

In situ PCR: protocols and applications

Polymerase Chain Reaction (PCR) Animation

More PCR Protocols Online

PCR Protocol--PCR Books

Polymerase Chain Reaction--PCR and PCR Related Books

Real Time PCR and General PCR Papers

Real-Time PCR Papers

An Introduction to Real-Time PCRN.A. SaundersThe development of instruments that allowed real-time monitoring of fluorescence within PCR reaction vessels was a very significant advance. The technology is very flexible and many alternative instruments and fluorescent probe systems have been developed and are currently available. Real-time PCR assays can be completed very rapidly since no manipulations are required post-amplification. Identification of the amplification products by probe detection in real-time is highly accurate compared with size analysis on gels.
Real-Time PCR PlatformsM.J. Logan and K.J. EdwardsReal-time PCR continues to have a major impact across many disciplines of the biological sciences and this has been a driver to develop and improve existing instruments. From the first two commercial platforms introduced in the mid 1990s, there is now a choice in excess of a dozen instruments, which continues to increase. Advances include faster thermocycling times, higher throughput, flexibility, expanded optical systems, increased multiplexing and more user-friendly software.
Homogeneous Fluorescent Chemistries for Real-Time PCRM.A. Lee, D.J. Squirrell, D.L. Leslie, and T. BrownThe development of fluorescent methods for a closed tube polymerase chain reaction has greatly simplified the process of quantification. Current approaches use fluorescent probes that interact with the amplification products during the PCR to allow kinetic measurements of product accumulation. These probe methods include generic approaches to DNA quantification such as fluorescent DNA binding dyes.
Performing Real-Time PCRK.J. EdwardsOptimisation of the reagents used to perform PCR is critical for reliable and reproducible results. As with any PCR initial time spent on optimisation of a real-time assay will be beneficial in the long run. Specificity, sensitivity, efficiency and reproducibility are the important criteria to consider when optimising an assay and these can be altered by changes in the primer concentration, probe concentration, cycling conditions and buffer composition. An optimised real-time PCR assay will display no test-to-test variation in the crossing threshold or crossing point and only minimal variation in the amount of fluorescence.
Internal and External Controls for Reagent ValidationM.A. Lee, D.L. Leslie and D.J. SquirrellPCR applications that require a high confidence in the result should be designed to control for the occurrence of false negatives. False negatives can occur from inhibition of one or more of the reaction components by a range of factors. While an external, or batch control is often used, the ideal control is one that is included in the reaction cocktail in a multiplex format. Early approaches used different sized amplicons combined with end-point analysis. Fluorescent homogenous real-time PCR methods have a number of advantages for implementing internal controls.
Quantitative Real-Time PCRN.A. SaundersUnlike classical end-point analysis PCR, real-time PCR provides the data required for quantification of the target nucleic acid. The results can be expressed in absolute terms by reference to external quantified standards or in relative terms compared to another target sequence present within the sample. Absolute quantification requires that the efficiency of the amplification reaction is the same in all samples and in the external quantified standards. Consequently, it is important that the efficiency of the PCR does not vary greatly due to minor differences between samples. Careful optimisation of the PCR conditions is therefore required. The use of probes in quantitative real-time PCR improves its performance and a range of suitable systems is now available.
Analysis of mRNA Expression by Real-Time PCRS.A. Bustin and T. NolanThe last few years have seen the transformation of the fluorescence-based real-time reverse transcription polymerase chain reaction (RT-PCR) from an experimental tool into a mainstream scientific technology. Assays are simple to perform, capable of high throughput, and combine high sensitivity with exquisite specificity. The technology is evolving rapidly with the introduction of new enzymes, chemistries and instrumentation and has become the "Gold Standard" for a huge range of applications in basic research, molecular medicine, and biotechnology.
Mutation Detection by Real-Time PCRK.J. Edwards and J.M.J LoganReal-time PCR is ideally suited for analysis of single nucleotide polymorphisms (SNPs) and has been increasingly used for this purpose since the advent of real-time PCR and as whole genome sequences have become available. It requires methods that are rapid, sensitive, specific and inexpensive, and several real-time methods have evolved which fulfil these requirements.
The Quantitative Amplification Refractory Mutation SystemP. Punia and N.A. SaundersThe amplification refractory mutation system (ARMS), which has also been described as allele-specific PCR (ASP) and PCR amplification of specific alleles (PASA), is a PCR-based method of detecting single base mutations. ARMS has been applied successfully to the analysis of a wide range of polymorphisms, germ-line mutations and somatic mutations. The technique has the ability to discriminate low-levels of the mutant sequence in a high background of wild-type DNA. In an ARMS PCR the terminal 3' nucleotide of one of the PCR primers coincides with the target mutation. Most applications of the method rely on 'end-point' analysis, utilising the classic gel-electrophoresis method.
Real-Time NASBAS. Hibbitts and J.D. FoxNASBA is an isothermal nucleic acid amplification method that is particularly suited to detection and quantification of genomic, ribosomal or messenger RNA. The product of NASBA is single-stranded RNA of opposite sense to the original target. The first developed NASBA methods relied on liquid or gel-based probe-hybridisation for post-amplification detection of products. More recently, real-time procedures incorporating amplification and detection in a single step have been reported and applied to a wide range of targets. Thus real-time NASBA has proved to be the basis of sensitive and specific assays for detection, quantification and analysis of RNA (and in one case DNA) targets.
Applications of Real-Time PCR in Clinical MicrobiologyA.D. SailsThe introduction of real-time PCR assays to the clinical microbiology laboratory has led to significant improvements in the diagnosis of infectious disease. There has been an explosion of interest in this technique since its introduction and several hundred reports have been published describing applications in clinical bacteriology, parasitology and virology. There are few areas of clinical microbiology which remain unaffected by this new method. It has been particularly useful to detect slow growing or difficult to grow infectious agents. However, its greatest impact is probably its use for the quantitation of target organisms in samples.
Application of Real-Time PCR to the Diagnosis of Invasive Fungal InfectionN. Isik and N.A. SaundersThe management of invasive fungal infections has been hampered by the inability to make a diagnosis at an early stage of the disease. Molecular diagnosis by PCR appears very promising since fungal DNA can be detected in the blood of infected patients earlier than when using conventional methods. Recently, interest in the diagnosis of invasive fungal infections by real-time PCR has increased. Real-time methods also have quantitative properties and are useful both for initial diagnosis and to assess the response to treatment. Many recent studies have combined serological tests with measurement of fungal DNA by using real-time PCR. Real-time PCR helps early diagnosis and arrangement of treatment protocols for patients with high risk of fungal infection.
General PCR Articles
Endonuclease-Mediated Long PCR and Its Application to Restriction Mapping Curr. Issues Mol. Biol. (1999) 1: 77-88 Chengtao Her and Richard M. WeinshilboumThe polymerase chain reaction (PCR) is the most widely used technique for the study of DNA. Applications for PCR have been extended significantly by the development of "long" PCR.
A PCR-based Method for Isolation of Genomic DNA Flanking a Known DNA Sequence Curr. Issues Mol. Biol. (1999) 1: 47-52 Catherine A. Boulter and Dipa NatarajanA simple PCR-based method for the isolation of genomic DNA that lies adjacent to a known DNA sequence.
Universal TA Cloning Curr. Issues Mol. Biol. (2000) 2: 1-7 Ming-Yi Zhou and Celso E. Gomez-SanchezTA cloning is one of the simplest and most efficient methods for the cloning of PCR products.
Analysis of Specific Bacteria from Environmental Samples using a Quantitative Polymerase Chain Reaction Curr. Issues Mol. Biol. (2002) 4: 13-18 Clifford F. Brunk, Jinliang Li and Erik Avaniss-AghajaniThe use of quantitative PCR for measuring bacterial abundance in environmental samples.
PCR Clamping Curr. Issues Mol. Biol. (2000) 2: 27-30 Henrik ØrumAn efficient, PCR based method for the selective amplification of DNA target sequences that differ by a single base pair. The method utilises the high affinity and specificity of PNA for their complementary nucleic acids and that PNA cannot function as primers for DNA polymerases.
DNA Splicing by Directed Ligation (SDL) Curr. Issues Mol. Biol. (1999) 1: 21-30 DNA Yuri A. BerlinSplicing by directed ligation (SDL) is a method of in-phase joining of PCR-generated DNA fragments that is based on a pre-designed combination of class IIS restriction endonuclease recognition and cleavage sites.
_PCR Family Brochure.book
File Format: PDF/Adobe AcrobatA basic set of PCR (chapter 4) and RT-PCR (chapter 5) protocols, including tips on. how to get the best results with our products. ...www.roche-applied-science.com/PROD_INF/MANUALS/pcr_man/chapter_1.pdf

PCR--Polymerase Chain Reaction

PCR—from (Dr. Chen, Dept of Biochem. & Mol. Biology, Univ. College London)

Polymerase Chain Reaction
1) Add the following to a microfuge tube:10 ul reaction buffer1 ul 15 uM forward primer1 ul 15 uM reverse primer1 ul template DNA5 ul 2 mM dNTP8 ul 25 mM MgCl2 or MgSO4 (volume variable)water (to make up to 100 ul)
2) Place tube in a thermocycler. Heat sample to 95C, then add 0.5 -1 ul of enzyme (Taq, Tli, Pfu etc.). Add a few drops of mineral oil.
3) Start the PCR cycles according the following schemes:
a) denaturation - 94C, 30-90 sec.b) annealing - 55C (or -5C Tm), 0.5-2 min. c) extension - 72C, 1 min. (time depends on length of PCR product and enzyme used)repeat cycles 29 times
4) Add a final extension step of 5 min. to fill in any uncompleted polymerisation. Then cooled down to 4- 25C.
Note: Most of the parameters can be varied to optimise the PCR (more at Tavi's PCR guide):a) Mg++ - one of the main variables - change the amount added if the PCR result is poor. Mg++ affects the annealing of the oligo to the template DNA by stabilising the oligo-template interaction, it also stabilises the replication complex of polymerase with template-primer. It can therefore also increases non-specific annealing and produced undesirable PCR products (gives multiple bands in gel). EDTA which chelate Mg++ can change the Mg++ concentration.b) Template DNA concentration - PCR is very powerful tool for DNA amplification therefore very little DNA is needed. But to reduce the likelihood of error by Taq DNA polymerase, a higher DNA concentration can be used, though too much template may increase the amount of contaminants and reduce efficiency.c) Enzymes used - Taq DNA polymerase has a higher error rate (no proof-reading 3' to 5' exonuclease activity) than Tli or Pfu. Use Tli, Pfu or other polymerases with good proof-reading capability if high fidelity is needed. Taq, however, is less fussy than other polymerases and less likely to fail. It can be used in combination with other enzymes to increase its fidelity. Taq also tends to add extra A's at the 3'end (extra A's are useful for TA cloning but needs to be removed if blunt end ligation is to be done). More enzymes can also be added to improve efficiency (since Taq may be damaged in repeated cycling) but may increase non-specific PCR products. Vent polymerase may degrade primer and therefore not ideal for mutagenesis-by-PCR work. d) dNTP - can use up to 1.5 mM dNTP. dNTP chelate Mg++, therefore amount of Mg++ used may need to be changed. However excessive dNTP can increase the error rate and possibly inhibits Taq. Lowering the dNTP (10-50 uM) may therefore also reduce error rate. Larger size PCR fragment need more dNTP. e) primers - up to 3 uM of primers may be used, but high primer to template ratio can results in non-specific amplification and primer-dimer formation (note: store primers in small aliquots). f) Primer design - check primer sequences to avoid primer-dimer formation. Add a GC-clamp at the 5' end if a restriction site is introduced there. One or two G or C at the 3' end is fine but try to avoid having too many (it can result in non-specific PCR products). Perfect complementarity of 18 bases or more is ideal. See Guide.g) Thermal cycling - denaturation time can be increased if template GC content is high. Higher annealing temperature may be needed for primers with high GC content or longer primers (calculate Tm). Using a gradient (if your PCR machine permits it) is a useful way of determining the annealing temperature. Extension time should be extended for larger PCR products; but reduced it whenever possible to limit damage to enzyme. Extension time is also affected by the enzymes used e.g for Taq - assume 1000 base/min (also check suppliers' recommendations, actual rate is much higher). The number of cycle can be increased if the number of template DNA is very low, and decreased if high amount of template DNA is used (higher template DNA is preferable for PCR cloning - lower error rate in the PCR).
h) Additives -
Glycerol (5-10%), formamide (1-5%) or DMSO (2-10%) can be added in PCR for template DNA with high GC content (they change the Tm of primer-template hybridisation reaction and the thermostability of polymerase enzyme). Glycerol can protects Taq against heat damage, while formamide may lower enzyme resistence.
0.5 -2M Betaine (stock solution - 5M) is also useful for PCR over high GC content and long stretches of DNA (Long PCR / LA PCR). Perform a titration to determine to optimum concentration (1.3 M recommended). Reduce melting temperature (92 -93 °C) and annealing temperature (1-2°C lower). It may be useful to use betaine in combination with other reagents like 5%DMSO. Betaine is often the secret (and unnecessarily expensive) ingredient of many commercial kits.
>50mM TMAC (tetramethylammonium chloride), TEAC (tetraethylammonium chloride), and TMANO (trimethlamine N-oxide) can also be used.
BSA (up to 0.8 µg/µl) can also improve efficiency of PCR reaction.
See also Dan Cruickshank's PCR additives and Alkami Enhancers for more.
i) PCR buffer
Higher concentration of PCR buffer may be used to improve efficiency.
This buffer may work better than the buffer supplied from commercial sources.16.6 mM ammonium sulfate67.7 mM TRIS-HCl, pH 8.8910 mM beta-mercaptoethanol170 micrograms/ml BSA1.5-3 mM MgCl2
j) The PCR product may be purified using a number of commercially available products or by gel-purification if the template needed to be removed. It can also be sequenced.
k) Trouble shooting see Tavi's page, MycoSite, Alkami Biosystems, Promega and Sigma.
l) PCR methods
Hot-start PCR - to reduce non-specific amplification. Can also be done by separating the DNA mixtures from enzyme by a layer of wax which melts when heated in cycling reaction. A number of companies also produce hot start PCR products, See Alkami Biosystem.
"Touch-down" PCR - start at high annealing temperature, then decrease annealing temperature in steps to reduce non-specific PCR product. Can also be used to determine DNA sequence of known protein sequence.
Nested PCR - use to synthesize more reliable product - PCR using a outer set of primers and the product of this PCR is used for further PCR reaction using an inner set of primers.
Inverse PCR - for amplification of regions flanking a known sequence. DNA is digested, the desired fragment is circularise by ligation, then PCR using primer complementary to the known sequence extending outwards.
AP-PCR (arbitrary primed)/RAPD (random amplified polymorphic DNA) - methods for creating genomic fingerprints from species with little-known target sequences by amplifying using arbitrary oligonucleotides. It is normally done at low and then high stringency to determine the relatedness of species or for analysis of Restriction Fragment Length Polymorphisms (RFLP).
RT-PCR (reverse transcriptase) - using RNA-directed DNA polymerase to synthesize cDNAs which is then used for PCR and is extremely sensitive for detecting the expression of a specific sequence in a tissue or cells. It may also be use to quantify mRNA transcripts. See also Quantiative RT-PCR, Competitive Quantitative RT-PCR, RT in situ PCR, Nested RT-PCR.
RACE (rapid amplificaton of cDNA ends) - used where information about DNA/protein sequence is limited. Amplify 3' or 5' ends of cDNAs generating fragments of cDNA with only one specific primer each (+ one adaptor primer). Overlapping RACE products can then be combined to produce full cDNA. See also Gibco manual.
DD-PCR (differential display) - used to identify differentially expressed genes in different tissues. First step involves RT-PCR, then amplification using short, intentionally nonspecific primers. Get series of band in a high-resolution gel and compare to that from other tissues, any bands unique to single samples are considered to be differentially expressed.
Multiplex-PCR - 2 or more unique targets of DNA sequences in the same specimen are amplified simultaneously. One can be use as control to verify the integrity of PCR. Can be used for mutational analysis and identification of pathogens.
Q/C-PCR (Quantitative comparative) - uses an internal control DNA sequence (but of different size) which compete with the target DNA (competitive PCR) for the same set of primers. Used to determint the amount of target template in the reaction.
Recusive PCR - Used to synthesise genes. Oligos used are complementary to stretches of a gene (>80 bases), alternately to the sense and to the antisense strands with ends overlapping (~20 bases). Design of the oligo avoiding homologous sequence (>8) is crucial to the success of this method.
Asymmetric PCR
In Situ PCR
Mutagenesis by PCR
Far too many to list properly.
For more information, protocols and links, go to PCR jump station, Alkami Biosystem, Fermentas, Promega, and Sigma, See also PCR primer, PCR notes and PCR manual at Roche and Qiagen.
Other PCR links - PCR lectures, radio-labelled probes, Thermocycler suppliers

PCR Protocol--Variants of PCR (2)

Special PCR Protocols (from biogate)

384-well PCR

Adjuvants in PCR reactions

Alpha-satellite DNA by PCR Preparation

Amplification of Genomic DNA using Alu PCR

Calculating Concentrations for PCR

Choice of Polymerases for PCR

Colony PCR

Core Sample PCR

Degenerate PCR

Degenerate PCR Primer Design

Degenerate PCR, a short guide

Designing PCR programs

Direct PCR from Whole Yeast Cells: Zymolyase Method

Disruption by Fusion PCR

Home-made Taq Polymerase Purification

Incorporation of Digoxigenin-dUTP into Plasmid Inserts Using PCR

Inverse PCR

Inverse PCR

Inverse PCR & Cycle Sequencing of P Element Insertions for STS Generation

Inverse PCR for PAC-end sequencing

Long PCR Reagents and Guidelines

Long-PCR Reagents and Guidelines

Methylated CpG Island Amplification

Methylation-Specific PCR

Multiplex PCR: Critical Parameters and Step-by-Step Protocol

PCR Additives

PCR Amplification of DNA

PCR Amplification of Inserts from Bacterial Cultures

PCR and multiplex PCR guide

PCR and multiplex PCR Troubleshooting

PCR of blood, hair or small tissue samples

PCR Primer Design

PCR Primer Design and Reaction Optimization

PCR protocol

PCR Technology

PCR to Amplify rRNA Gene Fragment

PEG Precipitation of PCR products

Polymerase Chain Reaction

Primary Amplification of Genomic DNA using DOP - PCR

Primer Design

primer design for PCR cloning

Purification of PCR products with Sephadex

Quantitative RT-PCR and Other PCR Procedures

RT In Situ PCR

Singel Nucleotide Primer Extension (SNuPE)

Single Primer ("Semi-Random") PCR

Single Tube Confirmation PCR Protocol

Site-directed Mutagenesis using PCR

SOEing PCR for mutagenesis

Standard PCR Protocol

Tail DNA for PCR (No Organic Solvents)

The In Situ PCR: Amplification and Detection in a Cellular Context

PCR Protocol--Variants of PCR

Variants of PCR

From Wikipedia, the free encyclopedia

This page assumes familiarity with the terms and components used in the Polymerase Chain Reaction (PCR) process.
The versatility of PCR has led to a large number of variants:

Contents
Basic modifications
Pretreatments and extensions
Buffer and temperature modifications
Primer modifications
Polymerase modifications
Mechanism modifications
Isothermal amplification methods
Additional reading
References
Basic modifications
Often only a small modification needs to be made to the 'standard' PCR protocol to achieve a desired goal:
One of the first adjustments made to PCR was the amplification of more than one target in a single tube. Multiplex-PCR can involve up to a dozen pairs of primers acting independently. This modification might be used simply to avoid having to prepare many individual reactions, or could allow the simultaneous analysis of multiple targets in a sample that has only a single copy of a genome. In testing for genetic disease mutations, six or more amplifications might be combined. In the standard protocol for DNA Fingerprinting, the 13 targets assayed are often amplified in groups of 3 or 4. Multiplex Ligation-dependent Probe Amplification (or MLPA) permits multiple targets to be amplified using only a single pair or primers, avoiding the resolution limitations of multiplex PCR.
VNTR PCR involves few modifications to the basic PCR process, but instead targets areas of the genome that exhibit length variation. The analysis of the genotypes of the sample usually involves simple sizing of the amplification products by gel electrophoresis. Analysis of smaller VNTR segments known as Short Tandem Repeats (or STRs) is the basis for DNA Fingerprinting databases such as CODIS.
Asymmetric PCR is used to preferentially amplify one strand of the target DNA. It finds use in some types of sequencing and hybridization probing, where having only one of the two complementary strands of the product is advantageous. PCR is carried out as usual, but with a limiting amount of one of the primers. When it becomes depleted, continued replication leads to an arithmetic increase in extension of the other primer[1]. A recent modification on this process, known as Linear-After-The-Exponential-PCR (or LATE-PCR), uses a limiting primer with a higher melting temperature Melting temperature (or Tm) than the excess primer to maintain reaction efficiency as the limiting primer concentration decreases mid-reaction[2]. (Also see Overlap-extension PCR).
Some modifications are needed to perform long PCR. The original Klenow-based PCR process had trouble making a product larger than about 400 bp. However, early characterization of Taq polymerase showed that it could amplify targets up to several thousand bp long[3]. Since then, modified protocols have allowed targets of over 50,000 bp to be amplified[4].


Nested PCR
Nested PCR, another early modification, can be used to increase the specificity of DNA amplification. Two sets of primers are used in two successive reactions. In the first, one pair of primers is used to generate DNA products, which may also contain products amplified from non-target areas. The products from the first PCR are then used to start a second, using one ('hemi-nesting') or two different primers whose binding sites are located (nested) within the first set. The specificity of all of the primers is combined, usually leading to a single product. Nested PCR is often more successful in specifically amplifying long DNA products than conventional PCR, but it requires more detailed knowledge of the sequence of the target.
Quantitative PCR (or Q-PCR) is used to measure the specific amount of target DNA (or RNA) in a sample. The normal PCR process is performed in a way that is largely qualitative - the amount of final product is only slightly proportional to the initial amount of target. By carefully running the amplification only within the phase of true exponential increase (avoiding the later 'plateau' phase), the amount of product is more proportional to the initial amount of target. Thermal cyclers have been developed which can monitor the amount of product during the amplification, allowing quantitation of samples containing a wide range of target copies. A method currently used is Quantitative Real-Time PCR. QRT-PCR methods use fluorescent dyes, such as Sybr Green, or fluorophore-containing DNA probes, such as TaqMan, to measure the amount of amplified product as the amplification progresses. It is often confusingly referred to as RT-PCR, the same acronym used for PCR combined with Reverse Transcriptase (see below), which itself might be used in conjunction with Q-PCR. More appropriate acronyms are QRT-PCR or RTQ-PCR.
Hot-start PCR is a technique that modifies the way that a PCR mixture is initially heated. During this step the polymerase is active, but the target has not yet been denatured and the primers may be able to bind to non-specific locations (or even to each other). The technique can be performed manually by heating the reaction components to the melting temperature (e.g. 95°C) before adding the polymerase[5]. Alternatively, specialized systems have been developed that inhibit the polymerase's activity at ambient temperature, either by the binding of an antibody, or by the presence of covalently bound inhibitors that only dissociate after a high-temperature activation step. 'Hot-start/cold-finish PCR' is achieved with new hybrid polymerases that are inactive at ambient temperature and are only activated at elevated temperatures.
Another simple modification can also decrease non-specific amplification. In Touchdown PCR, the temperature used to anneal the primers is gradually decreased in later cycles. The annealing temperature in the early cycles is usually 3-5°C above the standard Tm of the primers used, while in the later cycles it is a similar amount below the Tm. The initial higher annealing temperature leads to greater specificity for primer binding, while the lower temperatures permit more efficient amplification to the end of the reaction[6].
Other common modifications to PCR allow it to amplify low copy targets. The original report on Taq polymerase[3] showed how the use of up to 60 cycles could amplify targets diluted to just one copy per reaction tube. A later report[7] showed how multiple genetic loci could be amplified and analyzed from a single sperm. Modified protocols[8] have allowed the identification of just one copy of the HIV genome within the DNA of up to 70,000 host cells.
Assembly PCR (also known as Polymerase Cycling Assembly or PCA) is the artificial synthesis of long DNA structures by performing PCR on a pool of long oligonucleotides with short overlapping segments. The oligonucleotide building blocks alternate between sense and antisense directions, and the overlaps determine the order of oligonucleotides, thereby selectively producing the final long DNA product[9].
In Colony PCR, bacterial colonies are rapidly screened by PCR for correct DNA vector constructs. Colonies are sampled with a sterile toothpick and dabbed into a master mix. To free the DNA for amplification, PCR is either started with an extended time at 95°C (when standard polymerase is used), or with a shortened denaturation step at 100°C and special chimeric DNA polymerase[10]. Colonies from the master mix that shows the desired product are then tested individually.
The Digital polymerase chain reaction simultaneously amplifies thousands of samples, each in a separate droplet within an emulsion.
Pretreatments and extensions
The basic PCR process can sometimes precede or follow another technique:
RT-PCR (or Reverse Transcription PCR) is a common method used to amplify, isolate, or identify a known sequence from a cell's or tissue's RNA. PCR is preceded by a reaction using reverse transcriptase, an enzyme that converts RNA into cDNA. The two reactions are compatible enough that they can be run in the same mixture tube, with the initial heating step of PCR being used to inactivate the transcriptase[3]. Also, the Tth polymerase described below exhibits RT activity, and can carry out the entire combined reaction. RT-PCR is widely used in expression profiling, which determines the expression of a gene or identifies the sequence of an RNA transcript (including transcription start and termination sites and, if the genomic DNA sequence of a gene is known, to map the location of exons and introns in the gene). The 5' end of a gene (corresponding to the transcription start site) is typically identified by an RT-PCR method named RACE-PCR, short for Rapid Amplification of cDNA Ends. (Note that the acronym RT-PCR has more recently been applied to Real-Time PCR, a version of Quantitative PCR described above.)
Since PCR is based on components of DNA replication, it is not surprising that it can easily be combined[1] with DNA sequencing. In its simplest form, the products of an 'asymmetric PCR' (above) are diluted into a new reaction containing sequencing components, which are then extended by Taq polymerase.
Ligation-mediated PCR uses small DNA oligonucleotide 'linkers' that are first ligated to fragments of the target DNA. PCR primers are then chosen from the linker sequences, and used to amplify the unknown target fragments. It has been used for DNA sequencing, genome walking, and DNA footprinting[11]. A related technique, Amplified fragment length polymorphism, looks at fragments of a genome that differ in length.
Methylation-specific PCR (or MSP) was developed to study patterns of methylation at CpG islands in genomic DNA[12]. Target DNA is first treated with sodium bisulfite, which converts unmethylated cytosine bases to uracil, which is recognized by PCR primers as thymine. Two amplifications are then carried out on the modified DNA, using primer sets that distinguish between the modified and unmodified templates. One primer set recognizes DNA with cytosines to amplify the previously methylated DNA, and the other set recognizes DNA with uracil or thymine to amplify unmethylated target. MSP using Q-PCR can also be performed to obtain quantitative information about methylation.
Buffer and temperature modifications
Adjustments to the 'small' components in PCR can sometimes be useful:
The divalent magnesium ion (Mg++) is crucial to the activity of the polymerase used in PCR. Since many of the other components used in an amplification will also bind Mg++, it's exact concentration available to the enzyme is difficult to control. In general, lower concentrations will increase replication fidelity, while higher concentrations will introduce more mutations (either of which may be desired).
The use in PCR of modified dNTPs can help to control 'carryover' contamination. The PCR process can be carried out using dUTP, an analog of the normal dTTP. Later amplifications are then treated with an enzyme that destroys DNA containing the analog, but leaving the normal target DNA unmodified[13]. Thus, targets that represent contamination from earlier amplifications are selectively destroyed.
A wide variety of other chemicals can be added to PCR, for a variety of effects. Mild denaturants (such as DMSO) can increase amplification specificity by destabilizing non-specific primer binding. Certain chemicals (such as glycerol) can act as stabilizers for the activity of the polymerase during amplification. Detergents (such as Triton X-100) can prevent having the polymerase stick to itself, or to the walls of the reaction tube.
The temperature changes carried out by the thermal cycler will also affect amplification. A particular set of primers are usually tested using different annealing temperatures to determine their optimum. The time given to the polymerase to fully copy the templates may need to be adjusted, depending on their lengths. Longer extension times can also lead to higher yields after the reaction has entered the 'plateau' phase. When amplifying low-copy targets, the total number of cycles performed must be increased.
The polymerases that perform replication during PCR sometime incorporate incorrect bases. This is of no consequence to most assays that test the bulk of the amplified product - the errors are scattered within the product at random, and aren't seen by the assay. However, it is best to perform high-fidelity PCR when the products are individually cloned (for sequencing or expression). A different DNA polymerase (such as Pfu, with a proofreading activity missing in Taq) might be used, and the Mg++ and dNTP concentrations might be adjusted to maximize the number of products that exactly match the original target DNA. Some researchers choose to do the opposite, purposefully running PCR under low-fidelity conditions to produce a spectrum of mutations in the amplified product.
(For additional details, see the auxiliary article PCR optimization.)
Primer modifications
Adjustments to the synthetic oligonucleotides used as primers in PCR are a rich source of modification:
Normally PCR primers are chosen from an invariant part of the genome, and might be used to amplify a polymorphic area between them. In Allele-specific PCR the opposite is done. At least one of the primers is chosen from a polymorphic area, with the mutations located at (or near) its 3'-end. Under stringent conditions, a mismatched primer will not initiate replication, whereas a matched primer will. The appearance of an amplification product therefore indicates the genotype. (For more information, see SNP genotyping.)
InterSequence-Specific PCR (or ISSR-PCR) is method for DNA fingerprinting that uses primers selected from segments repeated throughout a genome to produce a unique fingerprint of amplified product lengths[14]. The use of primers from a commonly repeated segment is called Alu-PCR, and can help amplify sequences adjacent (or between) these repeats.
Primers can also be designed to be 'degenerate' - able to initiate replication from a large number of target locations. Whole genome amplification (or WGA) is a group of procedures that allow amplification to occur at many locations in an unknown genome, and which may only be available in small quantities. Other techniques use degenerate primers that are synthesized using multiple nucleotides at particular positions (the polymerase 'chooses' the correctly matched primers). Also, the primers can be synthesized with the nucleoside analog inosine, which hybridizes to three of the four normal bases. A similar technique can force PCR to perform Site-directed mutagenesis. (also see Overlap extension polymerase chain reaction)
Normally the primers used in PCR are designed to be fully complementary to the target. However, the polymerase is tolerant to mis-matches away from the 3' end. Tailed-primers include non-complementary sequences at their 5' ends. A common procedure is the use of linker-primers, which ultimately place restriction sites at the ends of the PCR products, facilitating their later insertion into cloning vectors.
An extension of the 'colony-PCR' method (above), is the use of vector primers. Target DNA fragments (or cDNA) are first inserted into a cloning vector, and a single set of primers are designed for the areas of the vector flanking the insertion site. Amplification occurs for whatever DNA has been inserted[3].
PCR can easily be modified to produce a labeled product for subsequent use as a hybridization probe. One or both primers might be used in PCR with a radioactive or fluorescent label already attached, or labels might be added after amplification. These labeling methods can be combined with 'asymmetric-PCR' (above) to produce effective hybridization probes.
Polymerase modifications
There are many choices for the all-important DNA polymerase used in PCR:
The Klenow fragment, derived from the original DNA Polymerase I from E. coli, was the first enzyme used to demonstrate PCR. It is inactivated in the denaturation step of PCR, and had to be replenished during each cycle.
The bacteriophage T4 DNA polymerase was also tested shortly after the first reports of PCR. It has a higher fidelity of replication than the Klenow fragment. Since it is also destroyed by heat, it has seen little use since the development of thermostable polymerases.
The DNA polymerase from Thermus aquaticus (or Taq), was the first thermostable polymerase used in PCR[3], and is still the one most commonly used. The enzyme can be isolated from its 'native' bacterial source, or from a cloned gene expressed in E. coli.
The Stoffel fragment is produced from a truncated gene for Taq polymerase, expressed in E. coli. It is missing the 'forward' nuclease activity, and may be able to amplify longer targets than the native enzyme.
The Faststart polymerase is a variant of Taq polymerase that only becomes active after the first denaturation step of PCR, thereby avoiding problems during the first cycle. (see Hot-start PCR above)
A thermostable polymerase has also been isolated from the archeozoic organism Pyrococcus furiosus. Unlike Taq polymerase, Pfu DNA polymerase includes a 'proofreading' activity, leading to about a 5-fold decrease in the error rate of replication[15]. Since these errors accumulate during every cycle of PCR, Pfu is the preferred polymerase when products are to be individually cloned for sequencing or expression.
An extremely thermostable DNA polymerase has been isolated from Thermococcus litoralis, and is marketed as Vent polymerase.
Another thermostable polymerase has been isolated from Thermus thermophilus, and is known as Tth polymerase. In the presence of Mn++ ions, it exhibits a reverse transcriptase activity, allowing PCR amplification to be initiated by RNA targets.
But not Bst polymerase, isolated from the thermophilic bacterium Bacillus stearothermophilus. This was an early candidate to be tested for PCR. It was later found to be unsuitable for continued amplification - it is irreversibly inactivated during the denaturation step. This highlights the point that a good polymerase for PCR should both be active at a higher temperature (for specificity), and should also be able to survive the near-boiling temperatures of the PCR process.
Mechanism modifications
Sometimes even the basic mechanism of PCR can be modified:
Unlike normal PCR, Inverse PCR allows amplification and sequencing of DNA that surrounds a known sequence. It involves initially subjecting the target DNA to a series of restriction enzyme digestions, and then circularizing the resulting fragments by self ligation. Primers are designed to be extended outward from the known segment, resulting in amplification of the rest of the circle. This is especially useful in identifying sequences to either side of various genomic inserts[16].
Similarly, Thermal Asymmetric InterLaced PCR (or TAIL-PCR) is used to isolate unknown sequences flanking a known area of the genome. Within the known sequence, TAIL-PCR uses a nested pair of primers with differing annealing temperatures. A 'degenerate' primer is used to amplify in the other direction from the unknown sequence[17].
Isothermal amplification methods
Some amplification protocols have been developed that only remotely resemble PCR:
Helicase-dependent amplification is a technique that is similar to traditional PCR, but uses a constant temperature rather than cycling through denaturation and annealing/extension steps. DNA Helicase, an enzyme that unwinds DNA, is used in place of thermal denaturation[18].
PAN-AC also uses isothermal conditions for amplification, and may be used to analyze living cells[19][20].
Additional reading
PCR Applications Manual (from Roche Diagnostics).]

[edit] References
1. ^ a b Innis MA, Myambo KB, Gelfand DH, Brow MA. (1988). "DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA". Proc Natl Acad Sci USA 85: 9436-4940. PMID 3200828.
2. ^ Pierce KE and Wangh LJ (2007). "Linear-after-the-exponential polymerase chain reaction and allied technologies Real-time detection strategies for rapid, reliable diagnosis from single cells". Methods Mol Med. 132: 65-85. PMID 17876077.
3. ^ a b c d e Saiki et al. "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase." Science vol. 239 pp. 487-91 (1988).
4. ^ Cheng S, Fockler C, Barnes WM, Higuchi R. "Effective amplification of long targets from cloned inserts and human genomic DNA." Proc Natl Acad Sci vol. 91(12) pp. 5695-9 (1994).
5. ^ Q. Chou, M. Russell, D.E. Birch, J. Raymond and W. Bloch (1992). "Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications". Nucleic Acids Research 20: 1717-1723.
6. ^ Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991). "'Touchdown' PCR to circumvent spurious priming during gene amplification.". Nucl Acids Res 19: 4008.
7. ^ Boehnke M et al. "Fine-structure genetic mapping of human chromosomes using the polymerase chain reaction on single sperm." Am J Hum Genet vol. 45(1) pp. 21-32 (1989).
8. ^ Kwok S et al. "Identification of HIV sequences by using in vitro enzymatic amplification and oligomer cleavage detection." J. Virol. vol. 61(5) pp. 1690-4 (1987).
9. ^ Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995). "Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides". Gene 164: 49-53. PMID 7590320.
10. ^ Pavlov AR, Pavlova NV, Kozyavkin SA, Slesarev AI (2006). "Thermostable DNA Polymerases for a Wide Spectrum of Applications: Comparison of a Robust Hybrid TopoTaq to other enzymes", in Kieleczawa J: DNA Sequencing II: Optimizing Preparation and Cleanup. Jones and Bartlett, pp. 241-257. ISBN 0-7637338-3-0.
11. ^ Mueller PR, Wold B (1988). "In vivo footprinting of a muscle specific enhancer by ligation mediated PCR". Science 246: 780-786. PMID 2814500.
12. ^ Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996). "Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands". Proc Natl Acad Sci U S A 93 (13): 9821-9826. PMID 8790415.
13. ^ Longo MC, Berninger MS, Hartley JL "Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions." Gene vol. 93(1) pp. 125-8 (1990).
14. ^ E. Zietkiewicz, A. Rafalski, and D. Labuda (1994). "Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification". Genomics 20 (2): 176-83.
15. ^ Cline J,Braman JC, Hogrefe HH "PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases." Nucleic Acids Research vol. 24(18) pp. 3546-51 (1996).
16. ^ Ochman H, Gerber AS, Hartl DL (1988). "Genetic applications of an inverse polymerase chain reaction". Genetics 120: 621-623. PMID 2852134.
17. ^ Y.G. Liu and R. F. Whittier (1995). "Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking". Genomics 25 (3): 674-81.
18. ^ Myriam Vincent, Yan Xu and Huimin Kong (2004). "Helicase-dependent isothermal DNA amplification". EMBO reports 5 (8): 795–800.
19. ^ David, F.Turlotte, E., (1998). "An Isothermal Amplification Method". C.R.Acad. Sci Paris, Life Science 321 (1): 909-914.
20. ^ Fabrice David (September-October 2002). Utiliser les propriétés topologiques de l’ADN: une nouvelle arme contre les agents pathogènes. Fusion.(in French)
Retrieved from "http://en.wikipedia.org/wiki/Variants_of_PCR"